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ABSTRACT – Formation estimation methodologies for distributed spacecraft 
systems are formulated and analyzed. A generic form of the formation estimation 
problem is described by defining a common hardware configuration, observation 
graph, and feasible estimation topologies. The implementation tradeoffs are 
discussed. A new “self-centralized” formation estimation approach is introduced 
that is computationally efficient and that eliminates the need for algorithm 
restructuring and state reinitialization after formation reconfiguration or 
member failure. The self-centered filter can provide the optimal estimate for 
similar state representations via the general properties of the conditional mean. 
Several architectural attributes of the self-centered estimator are discussed and 
then compared to other potential approaches.   

KEYWORDS: Formation Flying, Decentralized Estimation, Formation Estimation 

INTRODUCTION  

Formation flying spacecraft refers to a set of spatially distributed spacecraft flying in formation with the 
capability of interacting and cooperating with one another.  In order to perform a task, the formation must 
collectively and collaboratively act as a single unit. Formation flying spacecraft differ from constellation 
of spacecraft by their interactive and cooperative attributes. The estimation and control problems involve 
deciding how to share sensor information and control authorities between spacecraft.  

Numerous NASA's future Earth and space science missions involve formation-flying spacecraft (e.g., 
Terrestrial Planet Finder (TPF), Terrestrial Planet Imager, Starlight, LISA) [1]. Maneuvering multiple 
spacecraft for these missions involves high precision alignments and synchronized translational and 
rotational movements. While some research has been done to understand the complexity involved [2-12] 
in achieving the precision coordination and control, reconfigurations, communication and station keeping 
for these missions, the formation estimation problem has not been adequately addressed.  

In this paper, a systematic approach to formation estimation of a distributed spacecraft system is 
investigated. The estimation problem is treated in a generic sense and may be applied to any N spatially 
distributed spacecraft in a formation. Specific considerations such as formation reconfiguration and 
initialization will be addressed.   
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FORMATION ESTIMATOR DEVELOPMENT PROCESS 

If a single spacecraft state estimator design is considered, a fixed form of the estimator algorithm can be 
chosen to handle most in-flight conditions such as various estimator mode switches (e.g. transition from 
sun point mode to earth point mode) or sensor failures. However, the problem is more complex when 
considering a multiple spacecraft case.  Formation reconfiguration or formation member addition/failures 
can cause the need to change the formation estimator state definitions.  From a practical point of view, it 
is highly desirable to have an estimator that does not require significant algorithm restructuring during 
those events.  We now develop a systematic approach to the formation estimator design. 

The building blocks that are used for the formation estimation consist of formation members and their 
associated hardware, and these will be used to define two types of links. To encapsulate the interchange 
and availability of information between spacecraft for estimation, we introduce the communication and 
observation graphs. The communication graph is a directed graph in which the vertices represent 
individual spacecraft and a directed edge, termed a communication link, indicates telemetry data is being 
communicated in the direction indicated. The observation graph is also a directed graph in which the 
vertices again represent spacecraft and the directed edge, termed an observation link, between vertices i 
and j indicates, quoting from our earlier work [11,12], that the spacecraft represented by vertex i has 
information flow from the spacecraft represented by vertex j of at least one of the following forms: 1) 
direct measurements, 2) communicated measurements and/or 3) communicated state estimates such that 
the relative states can be estimated. That is, an observation link is considered established from spacecraft i 
to j, if spacecraft i can reconstruct the relative position and velocity between spacecraft i and j. If the 
information is being communicated, the communication graph is used to determine the routing. An 
observation graph indicates availability of relative state information between spacecraft.   

Once established, the graphs and the mission objectives provide grounds for defining formation state 
variables. Given formation state variables, a specific formation estimation topology must be chosen, for 
instance, for larger formations, it may be sensible to use only a local subset of all the available 
observation links.  After fixing a topology, the estimation problem is clearly defined and hence the 
estimator itself be designed. 
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Figure 1: A Conceptual Formation Estimator Formulation Process 

TYPICAL FORMATION FLYING SYSTEM HARDWARE  

A common set of formation flying sensors consists of a 6 degrees-of-freedom (DOF) inertial sensors and 
relative position and velocity sensors.  The inertial navigation sensors, such as 3 axis accelerometers, are 
necessary for a typical formation deployment phase wherein the separated spacecraft must self-navigate 
into an initial formation geometry without the aid of relative position sensors. Also, relative position 
sensors generally require an acquisition phase before they can provide measurements and can “go blind” 
due to a limited field-of-view.  The inertial sensors are also necessary for formation member separation 
and recapture during an arbitrary formation reconfiguration.   

In addition to the inertial sensors, relative position and velocity sensors are necessary since the inertial 
sensors alone cannot estimate the position of spacecraft without drifting over time.  A combined package 
of inertial sensors and relative position/velocity sensors provide a good marriage of sensors as they 
compensate for one another’s shortcomings.  This particular sensor integration approach does not allow 
absolute inertial calibration of accelerometers, but calibrates only the relative biases. For many deep space 
missions, the inertial position knowledge is not needed. If an inertial calibration of an accelerometer is 
needed, other inertial reference position measurements such as the GPS can be incorporated.   
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Within a formation, spacecraft will be communicating measurements to each other, as the filter 
propagation process requires inertial sensor data from other spacecraft. In addition, measurements can be 
communicated to support the filter update.  Therefore, the inter-spacecraft communication devices are an 
integral part of the formation estimation system. 

A common reference frame is necessary to translate these communicated measurements into any 
particular spacecraft body frame.  Inertial attitude sensors (gyros and star trackers), necessary for 
individual spacecraft attitude control, provide a common inertial reference frame to support the 
transformation of communicated data.  

FORMATION OBSERVATION GRAPHS  

As stated earlier, the observation graph is a directed graph in which the vertices represent individual 
spacecraft and a directed edge, termed an observation link, between vertices i and j indicates availability 
of relative state information between spacecraft.  An observation link is considered established from 
spacecraft i to j, if the spacecraft i can reconstruct the relative position and velocity between spacecraft i 
and j. The equations underlying an observation links are now developed in detail. 

Observation Link: Communication requirements for state propagation 

Relative position and velocity between S/Ci and S/Cj can be propagated at S/Ci if certain inertial 
measurements are communicated from S/Cj. Consider the relative dynamics between the ith and jth 
spacecraft (S/Ci and S/Cj) as shown in Figure 2.    
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Figure 2:  Observation link between spacecraft i and j 

The relative motion between S/Ci and S/Cj at the Relative Position Sensor Assembly (RPSA) reference 
points, Li and Lj, is: 

( ) ( )( ) ( )JL JL JA JA JB JB JB JB JB JB
ij i ij j i ij j i i i ij j j j i i ij j ja M a a M a l M l l M lρ ω ω ω ω α= − = − + × × − × × + × − ×&& α     (1) 

where JL
ia and  are the inertial accelerations of the points LJL

ja i and Lj, JA
ia and  are the inertial 

accelerations at the accelerometer locations,  M

JA
ja

ij is the directional cosine matrix from jth spacecraft body 
frame to ith spacecraft body frame,  JB

iω , JB
jω  and JB

iα , are the i-th and j-th spacecraft’s body rate and 
angular acceleration, l

JB
jα

i and lj are the vectors from the RPSA reference points to the corresponding 
accelerometer locations, and all vectors are expressed in body frame of the corresponding spacecraft. 
Replace JA

ia and JA
ja  with the augmented accelerometer model of: 
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        and               for ,JA JA
pm p p p p pa a b v b p iη= + + = =& j    (2) 

and define the relative accelerometer bias as:  

=   where   ,     assumed to be constantij i ij j i iob b M b b b− =    (3) 

where JA
pma  is the accelerometer measurement, bp is an accelerometer bias and νp, ηp are white Gaussian 

noises. Then the (1) can be written as: 
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       (4) 

where Vij is the relative velocity between RPSA reference points on S/Ci and S/Cj, the translational 

relative state vector between spacecraft i and j is 
TT T T

ij ij ij ijx b V ρ =   , and  

   
( ) ( )( )

      and         JA JA
i ij j im ij jm io

JB JB JB JB JB JB
i i i i i ij j j j j j

M a M a b

l l M l

ν ν ν ζ

ψ ω ω α ω ω α

= − + = − +

l = × × + × − × × + ×  

     (5) 

As is seen from (4) and (5), in order to propagate the relative position and velocity between spacecraft i 
and j at spacecraft i, S/Cj must communicate the following information to S/Ci: JjM (directional cosine 

matrix from j-th spacecraft to inertial space J), , ,  and JB JB JA
j j j jl aω α m . 

Observation Link: Measurement incorporation for state update 

Accelerometers drift (see (2)); therefore, relative measurements are necessary to remove the integration 
error due to the drift. Measurement of ijρ or Vij is needed for long-term accuracy in the estimator.  
Spacecraft i can obtain this measurement: 1) directly from its own RPSA, 2) from spacecraft j, if 
spacecraft j has measured the relative position (velocity) of spacecraft i with respect to itself, and/or 3) 
from a third spacecraft, if that spacecraft has measured the position of both spacecraft i and spacecraft j 
with respect to itself. 

 FORMATION ESTIMATION PROBLEM STATEMENT 

Through processing of collected spacecraft sensor measurements, the formation estimator estimates the 
states needed by the formation control and guidance algorithms.  As the spacecraft are assumed to have 
inertial attitude sensors (e.g. star trackers), we do not consider attitude estimation in this first formulation. 
That is, the formation attitude estimation problem is simpler in the sense that relative attitude can be 
determined from differencing inertial attitude estimates. 

With this in mind, let Fx  be the formation state vector; it incorporates the translational dynamics of the 
formation and all possible observation links. Note that this is a non-minimal state representation of the 
formation system.  Fx is defined as: 

T
12 13 1 23 24 2 ( 1)     F T T T T T T T

N N Nx x x x x x x x − =  L L L N   (6) 

Note that it accounts for redundancies of the form ij jiρ ρ= −
F

. All possible observation links are captured 

with N(N-1)/2 translational relative state vectors, so  x is of dimension 9 N(N-1)/2. 
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The estimation problem is to find the minimum variance estimate of xF given the measurement history of 
Z: 

( )(arg
ˆ

ˆ ˆmin  F

TF F F F
x

x E x x x x= − −
 

)ˆF 
      (7) 

where ^ signifies an estimate and the conditioning on Z is assumed in the notation.  

FORMATION ESTIMATION ARCHITECTURES  

 Formation estimation architectures (FEAs) can be divided into three categories: centralized, distributed 
and decentralized. Each FEA is discussed in detail. 

Centralized Estimation Architecture 

A FEA is centralized if there is a single formation-wide master filter that collects the sensor 
measurements, control inputs and configurations of all spacecraft and the master filter then estimates the 
formation state. Since the estimation is performed in a single filter, the cross correlation of state variables 
can be conveniently maintained. The entire covariance matrix can also be retained and propagated 
without being affected by spacecraft failures as long as the spacecraft hosting the master filter has not 
failed. Finally, as is made clear by comparison to other architectures subsequently, optimality is 
straightforward to ensure in the centralized FEA. 

Some missions are well suited for the centralized FEA.  For example, the composition and geometry of 
TPF allows a centralized FEA, as there are 4 nearly identical collector spacecraft and 1 combiner 
spacecraft.  Optically, the combiner spacecraft plays a role of centralization.  Therefore, using the 
combiner as the host of the centralized filter is reasonable.  However, the centralized FEA has a number 
of drawbacks. First, a failure of the spacecraft that the master filter resides on would end estimation.  
Secondly, when a large-scale formation is considered, the dependence on a master can be functionally 
undesirable as it results in excessive communication and line-of-sight visibility requirements on the 
formation members.   Finally, the computational burden is concentrated in one spacecraft processor.   

Distributed Estimation Architecture 

If each spacecraft has its own local estimator and provides estimates to a master filter that then combines 
the local state estimates into a formation state estimate, the FEA is said to be distributed. The master filter 
may specify the states that the local estimators estimate or it may simply collect what information is 
available.  

This FEA enables distribution of the estimation computational burden to each spacecraft; however, this 
approach adds significant complexity to calculating the formation state correlation as follows.  Since the 
local state estimates are collected instead of raw measurements, the estimates from two different 
spacecraft can be correlated (possibly due to sharing of same measurements between the two).  If such 
correlation is not accounted for, the master filter’s accuracy can be degraded, and for some nonlinear 
systems with an extended Kalman filter, it can cause instability.  In addition to the complexity of state 
correlation treatment, the filter may have to restructure after a spacecraft failure depending on the 
subtasks assigned to the failed spacecraft.   

Decentralized Estimation Architecture 

The estimation architecture is considered decentralized if the formation lacks a formation-wide master 
filter.  Each spacecraft estimates the subset of the formation state variables it requires for control with 
locally available sensor measurements and communicated data.  In the distributed FEA, the spacecraft 
also had local estimators, but they passed their estimates to a master filter that then returned an estimate 
of the entire formation state vector; as a result every spacecraft has identical state estimates. In contrast, 
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the decentralized architecture results in different estimates for different spacecraft.  However, the 
estimates can be synchronized via communication devices if desired.  

The main advantage of the decentralized architecture is that the formation estimation is robust against any 
single point failure of any formation member. Recall that the centralized FEA will fail if the master 
spacecraft fails.  For the decentralized FEA, the impact of spacecraft failure is identical for all spacecraft 
and the problem does not propagate to the other members of the formation.  Furthermore, if the filter 
algorithm is structured conveniently, then the local estimation process can continue uninterrupted. In such 
case, the local estimator gracefully tolerates a failure of a formation member.   

SELF-CENTERED DECENTRALIZED ESTIMATION TOPOLOGY 

A specialized form of the decentralized formation estimation architecture is to describe the formation 
system with the self-centered perspective as shown in Figure 3.  Each spacecraft describes the relative 
state variables with respect to itself in a one-to-one manner. With this description, a failure of a formation 
member does not interrupt the estimation process and does not require a filter restructuring and 
initialization as is shown subsequently. A failed member or a disrupted inter-communication link can be 
gracefully tolerated by using the self-centered definition of the formation state vector. Due to this 
advantage we investigate this estimator methodology further. 
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Figure 3: Self-centered representation of formation states 

State and Measurement Models 

The formation system of Figure 3 can be constructed by augmenting (4) for each inter-spacecraft 
translational relative state as follows.  Write (4) as: 

      for j=1, ... ,  N, and j iij ij ij ij ijx A x w u= + + ≠&             (8) 

Considering a particular realization of the formation state vector, 1 2
TS T T T

i i iNx x x x =  L , where the 

superscript “S” indicates “self-centered,” the state space model of the self-centered system of Figure 3 is: 

1 1 1

2 2 2

0 0 0
0 0 0
0 0 0
0 0 0

i i i

i i iS S

iN iN iN

A w u
A w u Sx x Ax

A w u

     
     
     = + + =
     
     
          

&
O M M

W U+ +    (9) 

The RPSA measurements have the form:  
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    m S
ij ij ijC x nρ = +      (10) 

where the observation matrix  comes from the sensor model and nijC ij is zero-mean, white, Gaussian 
sensor noise and the superscript “m” indicates a measurement.  Note that particular sensor measurements 
may not always be available due to, for example, an obscuration of one spacecraft by another. 

In addition to the direct measurement of (10), measurements can be communicated. For example, if ρjk
m is 

available (see Fig. 4) at spacecraft j, then spacecraft i treats the communicated measurement from 
spacecraft j as a direct measurement with the following observation matrix: 

   [0 : 0 0 :0 0 : 0]m S
jk ik ij jk ij jk ij jk jk

SM I I x n M C x nρ ρ ρ ρ= − ⇒ = − + = +L L   (11) 

where Mij is needed to rotate the measurement to spacecraft i’s body frame. 
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Fig. 4: Example of communicated RPSA sensor measurements 

The self-centered estimation formulation described by (9), (10), and (11) is computationally efficient 
when compared to other decentralized, coupled topologies.  First of all, the self-centered approach uses a 
minimal state representation.  Then as shown by (9) the covariance propagation computational burden can 
be reduced by taking advantage of the block diagonal form of  the A matrix.   

Robustness to Formation Member Failure 

As shown by the (9), the propagation of the relative translational state vector between one spacecraft and 
another is decoupled, assuming the plant noises, wij, are not correlated for all i≠j, and neither are the 
controls, uij, i≠j. Consider the following example using the model: 

0
0

ij ij ij ij ij S

ik ik ik ik ik

x A x w u
Ax W U

x A x w u
         

= + + =         
         

&

&
+ +

1

   (12) 

Prior to (condition 1) and after (condition 2) the failure of spacecraft k, the measurements are given by: 

[ ]1 1 2
ij

ik

x
Z C C n

x
 

= + 
 

  and 2 3 0 ij

ik

x
2Z C

x
   n= +    

    (13) 

Assuming a Kalman filter, we expand the governing Riccati equation for both conditions. For condition 1: 

  1        T TP AP PA Q PC R CP−= + + − ⇒&
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[ ]11 12 11 12 1 11 12 1 11 12111 12
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(13) 

For condition 2: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
11 1 2 1 11 11 1 2 1 1211 11 1 12 1211 12

1 121 22 21 21 22 22 2 21 1 2 1 11 21 1 2 1 12

T TT T
ij ij ij ik

T T T T
ik ij ik ik

P C R C P P C R C PA P P A Q A P P AP P
P P A P P A A P P A Q P C R C P P C R C P

− −

− −

  + + +    = −    + + +      

& &

& &
         (14) 

For condition 2, we have: ( ) (1
11 11 11 1 11 1 2 1 11

T T
ij ijP A P P A Q P C R C P−= + + −&

ij

) and so P11 equation is decoupled 

from .  This can be generalized if 12 21 22,   or  P P P A is replaced with a large square matrix (so conveniently 
to augment the upper block-diagonal system of healthy spacecraft).  Consequently, a failed formation 
member can be gracefully treated within the filter without any filter state restructuring. 

Preservation of Filter Optimality during a Linear State Space Transformation 

In addition, optimal estimates for similar state descriptions are obtained by linear transformation of the 
self-centered state estimate. Let’s consider a self-centered formation system of (from (9), (10) and (11)): 

S S

S

x Ax W U

z Cx n

= + +

= +

&       (15) 

where W and n are the process and sensor noises, and z is the sensor measurement.  The Kalman filter 
designed for (15) provides optimal solution of: 

( ) (
ˆ

ˆ ˆarg min
TS S S

opt
x

)ˆS Sx E x x x x = − − 
 

    (16) 

where the expectation E is conditioned on measurements Z.  Consider a linear transformation of state Sx  
given by: 

Sy Mx=      (17)  

Proposition:  if M invertible then is the solution to ˆ ˆS
opty Mx=

( ) ( ){ }
ˆ

ˆ ˆarg min T
opt

y
y E y y y y= − ˆ−

1 ˆ−

    (18) 

Proof:  Substituting (17) into the right hand side of (18)  

( ) ( ){ } ( ) ( )1ˆ ˆ ˆ
TT S T SE y y y y E x M y M M x M y− − − = − − 

 
   (19) 

Define , which is symmetric, to find the minimum we first take the derivative: TG M M=

( ) ( ) ( ) ( )1 1 1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ

T TT TS S S S T S S T
x xE x M y G x M y E x Gx y M Gx x GM y y M GM y− − − − −∂ ∂
∂ ∂

  − − = − − +  
  

1 ˆ
T − 




 (20) 
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( ) ( ) ( ) ( )1 1 1 1ˆ ˆ
T T TS T S TE M Gx G x M GM y M G M y− − − − = − − + + 

 
1−

1 0=

ˆ=

 

Setting this result equal to zero yields 

( ) ( )1 1 ˆ2 2
T TSE M Gx M GM y− − −− +

 
    (21)  

Then,       

      (22) ( ) ( ) { }
1

1 1 1ˆ
T T S S

optopty M GM M GE x Mx
−

− − − =  
 

Again, this condition is valid for any M invertible.  Consequently the optimal estimate x̂ of the self-
centered filter can provide the optimal estimate for without recourse to another estimator. ŷ

CONCLUSION 

Formation estimation methodologies for distributed spacecraft systems are formulated and analyzed. In 
particular, self-centered formation estimation approach is developed. The resulting self-centered approach 
is a computationally efficient algorithm, and the filter will operate without a need for restructuring of the 
state under formation member failures or formation reconfigurations.  It is shown that the self-centered 
filter provides optimal estimates under linear nonsingular formation state transformations.  
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